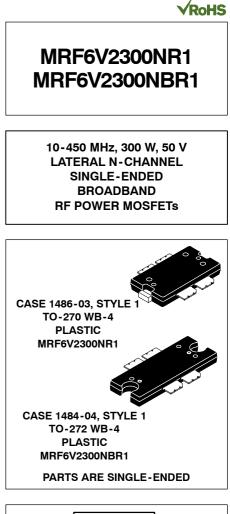
Freescale Semiconductor Technical Data

RF Power Field Effect Transistors

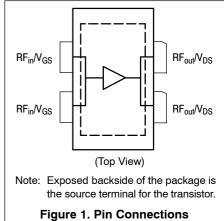
N-Channel Enhancement-Mode Lateral MOSFETs

Designed primarily for CW large-signal output and driver applications with frequencies up to 450 MHz. Devices are unmatched and are suitable for use in industrial, medical and scientific applications.


 Typical CW Performance at 220 MHz: V_{DD} = 50 Volts, I_{DQ} = 900 mA, P_{out} = 300 Watts Power Gain — 25.5 dB

Drain Efficiency — 68%

 Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 300 Watts CW Output Power


Features

- Integrated ESD Protection
- Excellent Thermal Stability
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- 200°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.

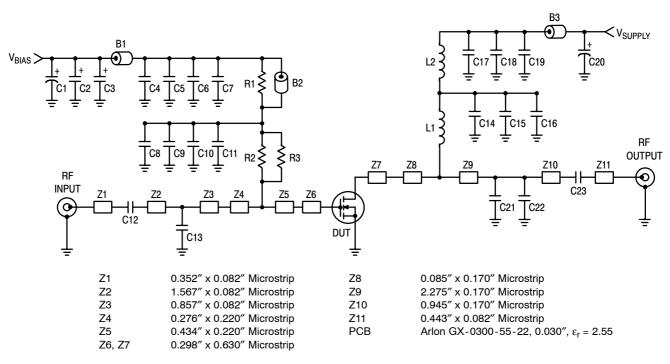
Document Number: MRF6V2300N

Rev. 2, 5/2007

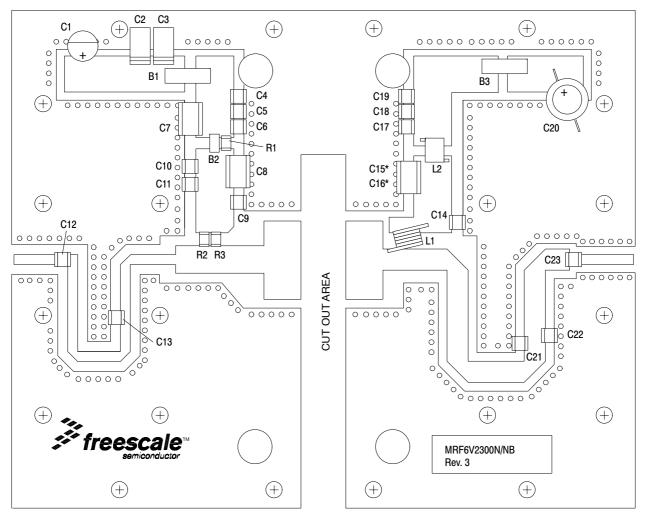
Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C

© Freescale Semiconductor, Inc., 2007. All rights reserved.

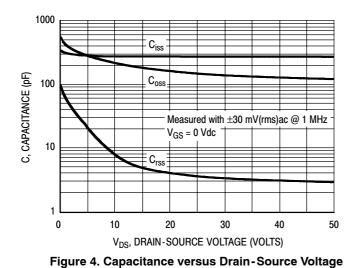

Characteristic		Symbol	Valu	e ^(1,2)	Unit	
Thermal Resistance, Junction to Case Case Temperature 83°C, 300 W CW	$R_{ extsf{ heta}JC}$	0.24		°C/W		
Table 3. ESD Protection Characteristics		I I				
Test Methodology			Cla	ass		
Human Body Model (per JESD22-A114)		2 (Minimum)				
Machine Model (per EIA/JESD22-A115)		A (Minimum)				
Charge Device Model (per JESD22-C101)			IV (Mi	nimum)		
Table 4. Moisture Sensitivity Level						
Test Methodology	Rating	Package	e Peak Temp	perature	Unit	
Per JESD 22-A113, IPC/JEDEC J-STD-020	3		260		°C	
Table 5. Electrical Characteristics (T _C = 25°C unless otherwise)	noted)					
Characteristic	Symbol	Min	Тур	Max	Unit	
Off Characteristics						
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	—	2.5	mA	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	50	μAdo	
Drain-Source Breakdown Voltage ($I_D = 150 \text{ mA}, V_{GS} = 0 \text{ Vdc}$)	V _{(BR)DSS}	110	_		Vdc	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}			10	μAdc	
On Characteristics						
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 800 μAdc)	V _{GS(th)}	1	1.63	3	Vdc	
Gate Quiescent Voltage (V_{DD} = 50 Vdc, I_D = 900 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.5	2.6	3.5	Vdc	
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2 Adc)	V _{DS(on)}		0.28		Vdc	
Dynamic Characteristics		1				
Reverse Transfer Capacitance (V _{DS} = 50 Vdc \pm 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	—	2.88		pF	
Output Capacitance (V _{DS} = 50 Vdc \pm 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	120	_	pF	
Input Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{iss}	_	268	_	pF	
Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50	Vdc, I _{DQ} = 900 r	nA, P _{out} = 300	0 W, f = 220	MHz, CW	•	
Power Gain	G _{ps}	24	25.5	27	dB	
Drain Efficiency	η _D	66	68	_	%	
Input Return Loss	IRL		-16	-9	dB	

2. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.


ATTENTION: The MRF6V2300N and MRF6V2300NB are high power devices and special considerations must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263 (for bolt down mounting) or AN1907 (for solder reflow mounting) **PRIOR TO STARTING SYSTEM DESIGN** to ensure proper mounting of these devices.

MRF6V2300NR1 MRF6V2300NBR1

Part	Description	Part Number	Manufacturer
B1, B2	95 Ω , 100 MHz Long Ferrite Beads, Surface Mount	2743021447	Fair-Rite
B3	47 Ω, 100 MHz Short Ferrite Bead, Surface Mount	2743019447	Fair-Rite
C1	47 μF, 50 V Electrolytic Capacitor	476KXM063M	Illinois Capacitor
C2	22 μF, 35 V Tantalum Capacitor	T494X226K035AT	Kemet
C3	10 μF, 35 V Tantalum Capacitor	T491D106K035AT	Kemet
C4, C19	10 K pF Chip Capacitors	ATC200B103KT50XT	ATC
C5, C18	20 K pF Chip Capacitors	ATC200B203KT50XT	ATC
C6, C11, C17	0.1 μF, 50 V Chip Capacitors	CDR33BX104AKYS	AVX
C7, C8, C15, C16	2.2 μF, 50 V Chip Capacitors	C1825C225J5RAC	Kemet
C10	220 nF Chip Capacitor	C1206C224Z5VAC	Kemet
C9, C12, C14, C23	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C13	82 pF Chip Capacitor	ATC100B820JT500XT	ATC
C20	470 μF, 63 V Electrolytic Capacitor	477KXM063M	Illinois Capacitor
C21	24 pF Chip Capacitor	ATC100B240JT500XT	ATC
C22	39 pF Chip Capacitor	ATC100B390JT500XT	ATC
L1	4 Turn #18 AWG, 0.18" ID	None	None
L2	82 nH Inductor	1812SMS-82NJ	Coilcraft
R1	270 Ω, 1/4 W Chip Resistor	CRCW12062700FKTA	Vishay
R2, R3	4.75 Ω, 1/4 W Chip Resistors	CRCW12064R75FKTA	Vishay


. . . .

* Stacked

Figure 3. MRF6V2300NR1(NBR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

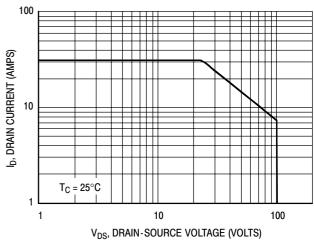


Figure 5. DC Safe Operating Area

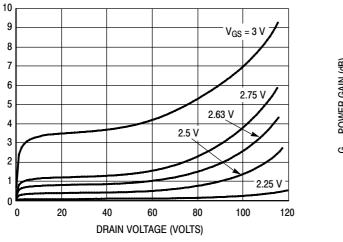
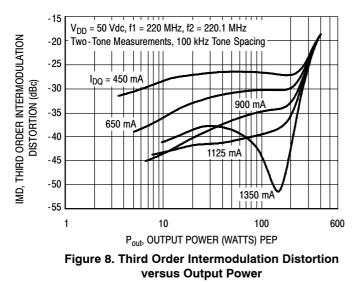
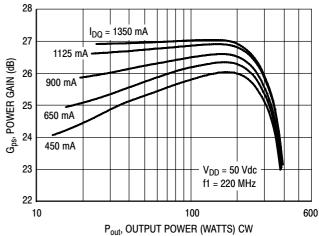
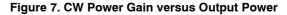





Figure 6. DC Drain Current versus Drain Voltage

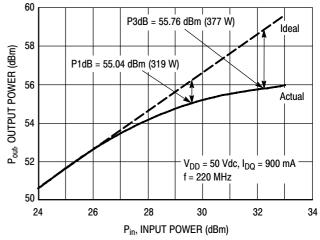


Figure 9. CW Output Power versus Input Power

I_D, DRAIN CURRENT (AMPS)

TYPICAL CHARACTERISTICS

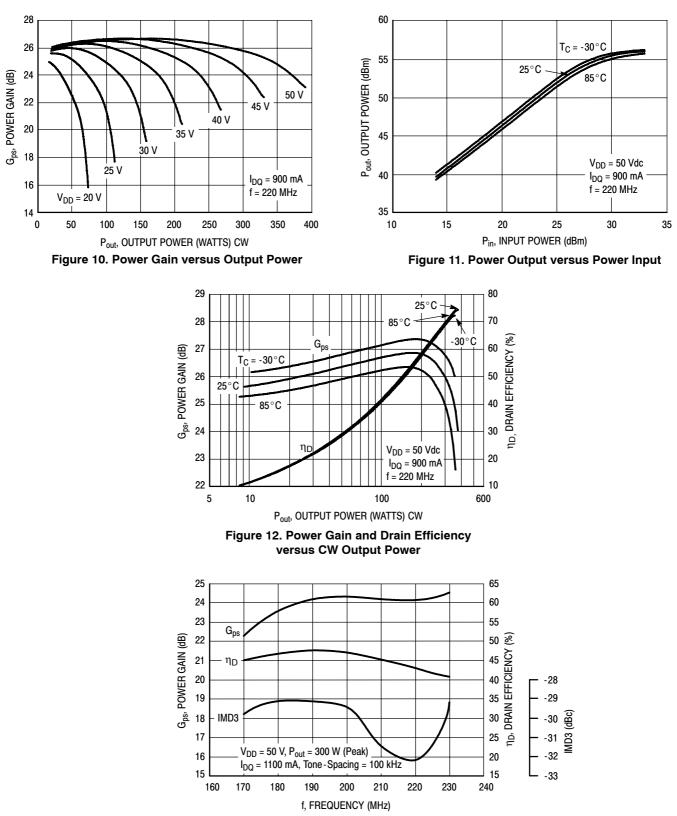
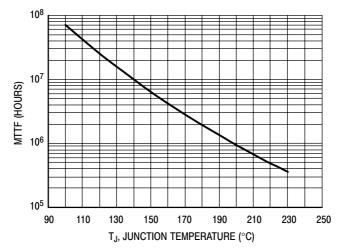
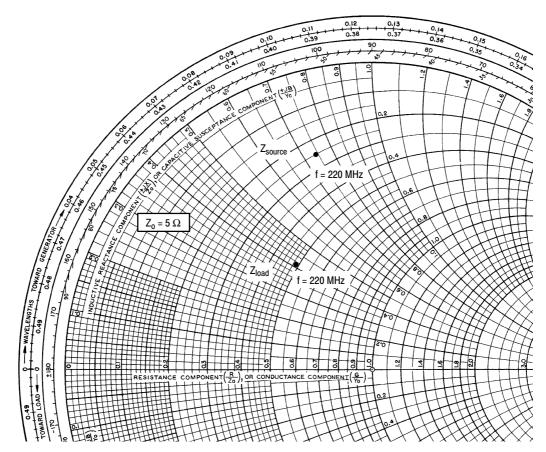
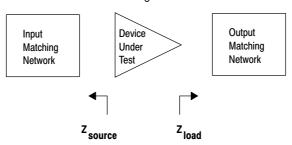



Figure 13. VHF Broadcast Broadband Performance


TYPICAL CHARACTERISTICS

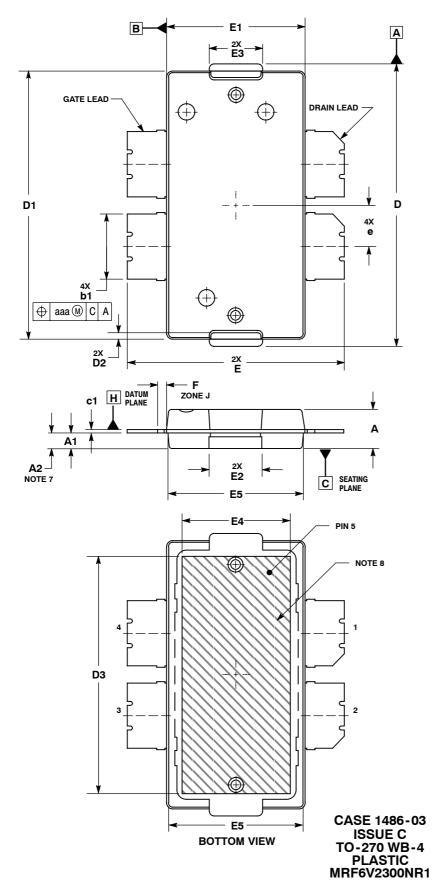
This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 50 Vdc, P_{out} = 300 W CW, and η_D = 68%.

MTTF calculator available at http://www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calculators by product.


Figure 14. MTTF versus Junction Temperature

 V_{DD} = 50 Vdc, I_{DQ} = 900 mA, P_{out} = 300 W CW

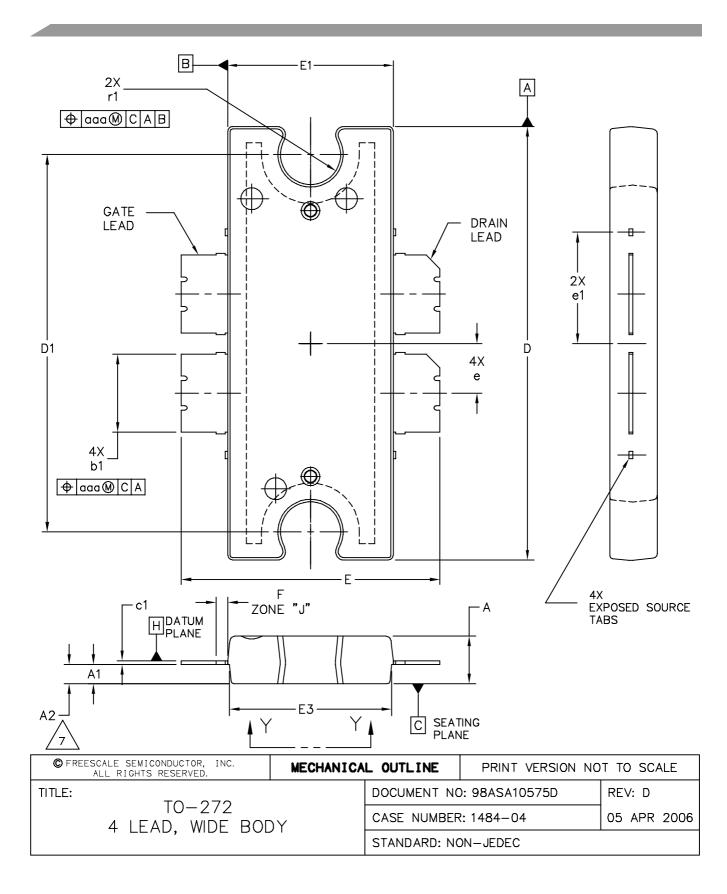
f MHz	Z _{source} Ω	Z _{load} Ω
220	1.23 + j3.69	2.43 + j2.04


Z_{source} = Test circuit impedance as measured from gate to ground.

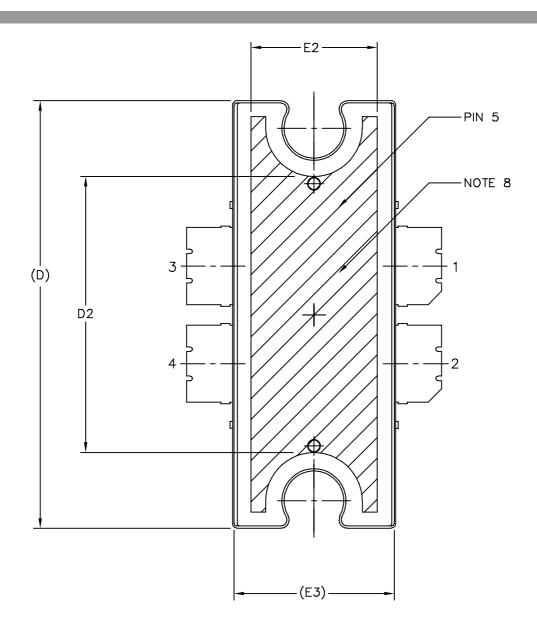
Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 15. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS


NOTES:

- NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994. 3. DATUM PLANE '+I- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS 'D' AND ''E1' DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS 'D' AND ''E1' DO INCLUDE MOLD MISMATCH AND ARE DETER-MINED AT DATUM PLANE -H-. 5. DIMENSION 'b1' DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SALL BE .005 TOTAL IN EXCESS OF THE 'b1' DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION 2A PPLIES WITHIN ZONE 'J' ONLY. 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.


	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	
A1	.039	.043	0.99	1.09	
A2	.040	.042	1.02	1.07	
D	.712	.720	18.08	18.29	
D1	.688	.692	17.48	17.58	
D2	.011	.019	0.28	0.48	
D3	.600		15.24		
Е	.551	.559	14	14.2	
E1	.353	.357	8.97	9.07	
E2	.132	.140	3.35	3.56	
E3	.124	.132	3.15	3.35	
E4	.270		6.86		
E5	.346	.350	8.79	8.89	
F	.025 BSC		0.64	BSC	
b1	.164	.170	4.17	4.32	
c1	.007	.011	0.18	0.28	
е	.106	BSC	2.69	BSC	
aaa	.0	04	0.	10	

STYLE 1:	
PIN 1.	DRAIN
2.	DRAIN
3.	GATE
4.	GATE
5.	SOURCE

RF Device Data

MRF6V2300NR1 MRF6V2300NBR1

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	LOUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE:		DOCUMENT NO): 98ASA10575D	REV: D
TO-272 4 LEAD, WIDE BODY		CASE NUMBER	: 1484–04	05 APR 2006
		STANDARD: NO	N-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 5. DIMENSIONS "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM A AND B TO BE DETERMINED AT DATUM PLANE H.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

STYLE 1: PIN 1 – DRAIN PIN 2 – DRAIN PIN 3 – GATE PIN 4 – GATE PIN 5 – SOURCE

	4 LEAD WIDE BODY						2: 1484–04 		05 APR 2006
TO-272							ر 		
TITLE:		S RESERVED.			DOCUMENT NO: 98ASA10575D REV: D				REV: D
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.				L OUT	LINE	PRINT VERS	SION NO	T TO SCALE	
F	.025	BSC	0	.64 BSC					
E3	.346	.350	8.79	8.89					
E2	.270		6.86						
E1	.353	.357	8.97	9.07					
Е	.551	.559	14	14.2					
D2	.600		15.24		aaa		.004		.10
D1	.810	BSC	20).57 BSC	e1	.239	INFO ONLY	6.07	INFO ONLY
D	.928	.932	23.57	23.67	е	.1	06 BSC		2.69 BSC
A2	.040	.042	1.02	1.07	r1	.063	.068	1.60) 1.73
A1	.039	.043	0.99	1.09	c1	.007	.011	.18	.28
А	.100	.104	2.54	2.64	b1	.164	.170	4.17	4.32
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
	INCH		MILLIMETER				INCH	м	ILLIMETER

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Feb. 2007	Initial Release of Data Sheet
1	Feb. 2007	 Added Fig. 1, Pin Connections, p. 1 Removed footnote references listed for Operating Junction Temperature, Table 1, Maximum Ratings, p. 1 Added Max value to Power Gain, Table 5, Functional Tests, p. 2
2	May 2007	• Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C4, C19, C5, C18, C9, C12, C14, and C23, p. 3

How to Reach Us:

Home Page:

www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use. even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.

